Mark Scheme Momentum Paper Questions Jan 2002—Jun 2008 (old spec)

Q4 Jun 2002

4(a)(i) length of card

[or distance travelled by trolley A] ✓

time at which first light gate is obscured

[or time taken to travel the distance] ✓

(ii) time at which second light gate is obscured

[or distance travelled after collision and time taken] ✓

(3)

(b) momentum = mass × velocity \checkmark mass of each trolley \checkmark (check whether) $p_{\text{initial}} = p_{\text{final}} \checkmark$ max(2)

(c) incline the ramps ✓
until component of weight balances friction ✓
[or identify where the friction occurs ✓
sensible method of reducing ✓]

(2)

2

kinetic energy changes to potential energy \checkmark potential energy calculated by measuring $h \checkmark$ equate kinetic energy to potential energy to find speed \checkmark [or use h to find $s \checkmark$ use $g \sin \theta$ for $a \checkmark$ use $v^2 = u^2 + 2as \checkmark$]

[or use h to find $s \checkmark$ time to travel s and calculate $v_{av} \checkmark$ $v = 2v_{av} \checkmark$] (3)

(b)(i) $p = mv = 0.5(0) \times 0.4(0) = 0.2(0) \checkmark \text{ N s (or kg m s}^{-1}) \checkmark$

(b)(ii) (use of $m_p v_p = m_t v_t$ gives) 0.002(0) v = 0.2(0) \checkmark $v = 100 \text{ m s}^{-1} \checkmark$ (4)

(c)(i) kinetic energy is not conserved ✓

(c)(ii) initial kinetic energy = $\frac{1}{2} \times 0.002 \times 100^2 = 10$ (J) \checkmark final kinetic energy = $\frac{1}{2} \times 0.5 \times 0.4^2 = 0.040$ (J) \checkmark hence change in kinetic energy \checkmark (allow C.E. for value of v from (b)) (4)

2 (a)(i)	(gravitational)	potential energy to kinetic energy Q2 Jun 2003	
(ii)	kinetic energy [or work done	to heat energy against friction] ✓	(2)
(b)	card of	g light gates biece of card on trolley of measured length ✓ biscures light gate just before trolley strikes block ✓ ate speed from length of card/time obscured ✓	
	alternative 1:	measured <u>horizontal distance</u> ✓ speed = distance/time ✓ time ✓	
	alternative 2:	measure $h \checkmark$ equate potential and kinetic energy \checkmark $v^2 = gh \checkmark$	
	alternative 3:	data logger + sensor ✓ how data processed ✓ how speed found ✓	(3)
(c)	vary starting he [or change ang the greater the	· ·	
	_	n of surface ✓ , lower speed ✓]	(2) (7)

2

(a)(i) (use of
$$F = ma$$
 gives) $1.8 \times 10^3 = 900 \ a \checkmark$
 $a = 2.0 \text{ m s}^{-2} \checkmark$

Q2 Jan 2004 (ii) (use of v = u + at gives) $v = 2.0 \times 8.0 = 16 \text{ m s}^{-1}$ (allow C.E. for *a* from (i))

(iii) (use of
$$p = mv$$
 gives) $p = 900 \times 16 \checkmark$
= $14 \times 10^3 \text{ kg m s}^{-1} \text{ (or N s)} \checkmark (14.4 \times 10^3 \text{ kg m s}^{-1})$
(allow C.E. for v from(ii))

(iv) (use of
$$s = ut + \frac{1}{2}at^2$$
 gives) $s = \frac{1}{2} \times 2.0 \times 8^2$
= 64 m \checkmark (allow C.E. for a from (i))

(v) (use of W = Fs gives) $W = 1.8 \times 10^3 \times 64$ $= 1.2 \times 10^5 \,\text{J} \checkmark (1.15 \times 10^5 \,\text{J})$

(allow C.E. for *s* from (iv))

[or
$$E_k = \frac{1}{2}mv^2 = \frac{1}{2} \times 900 \times 16^2$$
 \(= 1.2 \times 10^5 \text{ J \sqrt{}} \)

(allow C.E. for v from (ii))] (9)

- decreases ✓ (c)(i)air resistance increases (with speed) ✓
 - (ii) eventually two forces are equal (in magnitude) \checkmark resultant force is zero ✓ hence constant/terminal velocity (zero acceleration) in accordance with Newton's first law ✓ $\max(5)$ correct statement and application of Newton's first or second law ✓ (16)

6 Q6 Jun 2004

- (a) kinetic energy not conserved ✓

 [or velocity of approach is equal to velocity of separation] (1)
- (b)(i) (use of p = mv gives) $p = 4.5 \times 10^{-2} \times 60 \checkmark$ = 2.7 kg m s⁻¹ \checkmark
 - (ii) (use of $F = \frac{\Delta(mv)}{\Delta t}$ gives) $F = \frac{2.7}{15 \times 10^{-3}} \checkmark$ $= 180 \text{ N} \checkmark$ [or $a = \frac{v - u}{t} = \frac{60}{15 \times 10^{-3}} = 4000 \text{ (m s}^{-1})$ $F = (ma) = 4.5 \times 10^{-2} \times 4000 = 180 \text{ N}$] (4)
- (c)(i) 180 N ✓
 (allow C.E. for value of F from (b) (ii))
 in opposite direction (to motion of the club) ✓
 - (ii) body A (or club) exerts a force on body B (or ball) ✓
 (hence) body B (or ball) exerts an equal force on body A (or club) ✓
 correct statement of Newton's third law ✓

 (9)

Ques	stion 5						
(a)	(i)	(change in	momentum of A) =	$= -\checkmark 25 \times 10^3 \checkmark$	kg m s ⁻¹ (or N	s) 🗸	4
	(ii)	(change in	momentum of B) =	$= 25 \times 10^3 \mathrm{kg m s}$	-1 ✓ Q5	Jun 2005	4
(b)			initial vel/m s ⁻¹	final vel/m s ⁻¹	initial k.e./J	final k.e./J	
		truck A	2.5	1.25	62500	15600	4
		truck B	0.67	1.5	6730	33750	
			√	√	✓	✓	
(c)		kinetic ener	etic energy not corgy is greater befor by correct calcula	e the collision (o	r less after) ✓		3

Question 1		
(a)	momentum ✓ Q1 Jun 2006	2
(b) (i) (ii)	450 m s ⁻¹ \checkmark in the opposite direction \checkmark $\Delta p = 8.0 \times 10^{-26} \times 900 \checkmark$ $= 7.2 \times 10^{-23} \text{ N s } \checkmark$	4
(c)	force is exerted on molecule by wall to change its momentum molecule must exert an equal but opposite force on wall in accordance with Newton's second or third law	4
	Total	10

Question 6	Q6 Jan 2007			
(a)	momentum is a vector quantity hence the momentum of one trolley is positive and the other negative or momenta cancel	√ √	2	
(b) (i)	momentum is conserved or correct use on Newton 3 (hence A must have the same magnitude of velocity after the collision as B but in opposite direction) since masses equal	√ √	4	
(ii)	collision is not likely to be elastic hence there is a decreases in E_k or energy lost to other forms (such as heat)	√ √		
(c)	time how long it takes trolley to travel a measured distance divide distance by time	///	3	
		Total	9	

Que	stion 3		7.0	
(a)	(i)	velocity/speed changes or acceleration ✓ Q3 Jan 20 the momentum decreases to zero ✓	80	
		because the wall exerts a force on the water ✓		
		hence water exerts an equal but opposite force on the wall ✓		max 5
		in accordance with Newton's third law ✓		
		correct application of Newton's second law ✓		
	(ii)	force is constant because water flows at a constant rate ✓		
(b)	(i)	(i) (use of $p = mv$)		
		p = 18 × 7.2 ✓		3
		p = 130 Ns ✓		3
	(ii)	force = 130 N ✓ (c.e. from (i))		
(c)		magnitude is greater ✓		2
		because there is a bigger (rate of) change of momentum ✓ or velocity or acceleration		
		Т	otal	10

Question 3		
(a)	accelerates uniformly/constantly for first 20 s ✓ (quoting numerical value ok)	
	travels at constant speed (of 15 m s ⁻¹) \checkmark Q3 Jun 2008	3
	decelerates (to rest) ✓ (or negative acceleration)	
	(n.b. only need to see uniformly/constant once)	
(b) (i)	(use of $p = mv$)	
	p = 1200 × 15 ✓	
	p = 18000 N s ✓	
(ii)	rate of change of momentum = 18000/20 = 900 N ✓	4
(iii)	(use of distance = average speed × time)	
	distance = (15 + 0)/2 × 20	
	distance = 150 m ✓	
	Total	7

Questic	on 6		
(a)		potential energy to kinetic energy ✓ (ignore mention of heat/sound)	1
(b) ((i)	gain of E_k = loss of E_p $1/2 mv^2 = mgh$ Q6 Jun 2008	
		$\frac{1}{2} \times 250 \times v^2 = 250 \times 9.81 \times 4.5$	
		$v^2 = 88.29$	
		$v = 9.4 \mathrm{m s^{-1}}$	
		(if use $g = 10 \mathrm{ms^{-2}}$ then -1 (answer $1.06 \mathrm{ms^{-1}}$))	4
((ii)	(use of $p = mv$)	i de
		$p = 250 \times 9.4 = 2350 \mathrm{Ns} \checkmark \text{ (if g = 10 m s}^{-2} \text{ then get 2694 N)}$	
((iii)	$(\text{use } m_1 u = m_2 v)$	
		2350 = (250 + 2000) v ✓	
		$v = 1.0(4) \mathrm{m s^{-1}} \checkmark$ (if g = 10 m s ⁻² then get 1.06 m s ⁻¹)	
		if omit 250 kg then -1 (answer 1.18 m s ⁻¹)	
(c) ((i)	(use of $E_k = \frac{1}{2}mv^2$)	
		CE from (b) (iii)	
		$E_k = \frac{1}{2} \times 2250 \times 1.042 \checkmark = 1200 \text{ J (1217 J)} \checkmark$	
((ii)	(use of work done = force × distance) (can use force = mass × acceleration)	4
		1217 = F × 0.25 ✓	
		F = 4900 N ✓	
		if include loss of E_p then get 26940 N and full credit	
		if use loss of E_p but ignore E_k then -1 mark	
(d)		resistive force from the ground will increase ✓	2
		as pile gets deeper in the ground ✓	
		Total	11